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Recently, the versatility of dynamic covalent chemistry (DCC)1

has been demonstrated2 in the multicomponent construction of
complex mechanically interlocked compounds, such as molecular
bundles3 and nanoscale Borromean rings,4 as well as in the highly
efficient template-directed synthesis5 of [2]rotaxanes.6 Previously,
we have reported7 that, by employing DCC in the form of reversible
imine bond formation, [2]rotaxanes with dialkylammonium ion
(-CH2NH2

+CH2-) recognition sites8 encircled by [24]crown-8
macrocycles can be prepared in high yields by a thermodynamically
controlled, templated self-assembly process, that is, a kind of
clipping procedure (Figure 1), as a result of the mixing together of
three different components, namely, a dialdehyde, a diamine, and
a dumbbell compound containing a-CH2NH2

+CH2- center to
template the [2]rotaxane formation.7 In the context of constructing
mechanically interlocked dendrimers9,10by employing a convergent
templation procedure, we have explored11 the feasibility of using
DCC to introduce dendrons onto multivalent cores carrying
-CH2NH2

+CH2- centers on their sidearms to act as “hooks” round
which “eyes” in the shape of diimine-containing [24]crown-8
macrocycles can be constructed in an activating environment. We
report herein that dendritic dialdehydes1a-c from generation zero
[G0] to generation two [G2], the diamine2, and the trisammonium
salt3-H3‚3PF6 can be self-assembled (Scheme 1) as three collections
of seven components, each in one-pot, under equilibrium conditions
to afford the imine-containing [G0]-[G2] mechanically interlocked
dendrimers4a-c-H3‚3PF6 in yields in excess of 90%. These
dynamic dendrimers can be converted into their kinetically stable,
neutral amine-containing dendrimers5a-c by reduction (fixation)
of the imine bonds using the BH3‚THF complex as the reducing
agent, and then subsequently isolated as their fully protonated
counterparts5a-c-H3‚3TFA after acidification with trifluoroacetic
acid (H-TFA).

While the [G0]-[G2] dendritic dialdehydes1a-c were obtained
from their corresponding [G0]-[G2] dendritic bromides12 (see
Supporting Information), the diamine27 and the trisammonium salt
3-H3‚3PF6

1m were prepared according to procedures already de-
scribed in the literature. The template-directed formation5 of the
[G0]-[G2] dendrimers requires only the mixing of 3 molar equiv

of dendritic dialdehydes1a-c with 3 molar equiv of the diamine
2 and 1 molar equiv of the dialkylammonium salt3-H3‚3PF6 in
either CD3CN or CD3NO2 (concentration∼35 mM) at room
temperature. Such clipping experiments were monitored directly
by 1H NMR spectroscopy. By way of an example, Figure 2 shows
(upper trace) the1H NMR spectrum (500 MHz, CD3NO2, 298 K)
of the dynamic [G2]-dendrimer4c-H3‚3PF6 recorded 5 min after
mixing the three components in the requisite amounts (3:3:1 for
1:2:3-H3‚3PF6). The spectrum can be interpreted in terms of trace
amounts of the starting materials plus the dynamic [G2]-dendrimer

Figure 1. Graphical representation of the template-directed synthesis of
mechanically interlocked dendrimers.

Scheme 1. Seven-Component Self-Assemblies in One-Pot
Procedures of the Dynamic Dendrimers 4a-c-H3‚3PF6
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4c-H3‚3PF6 present in more than 90% yield. Specifically, the
formation of4c-H3‚3PF6 is supported by the appearance of a sharp
(singlet) resonance (δ ) 8.12 ppm) for the equivalent imine protons
along with the disappearance of the singlet peak (δ ) 9.95 ppm)
for the formyl protons in the [G2]-dialdehyde1c. On the basis of
their multiplicities and relative integrations, all of the other1H NMR
signals in4c-H3‚3PF6 can be assigned to protons in the [G2]-
dendrimer. Similar characterizations were obtained for the [G0]-
and [G1]-dendrimers4a-H3‚3PF6 and4b-H3‚3PF6. In general, the
1H NMR spectra of these dynamic dendrimers did not undergo any

significant changes even after standing for more than 24 h at room
temperature. This collective behavior demonstrates the remarkable
stabilities of these mechanically interlocked dynamic compounds,
presumably as much because of the numerous stabilizing [N+-
H‚‚‚O] hydrogen bonds and [C-H‚‚‚O] interactions as from the
favorable charge transfer and other interactions involvingπ-donating
andπ-accepting aromatic rings.

On account of their six readily hydrolyzable imine bonds, the
three kinetically labile [G0]-[G2]-dendrimers were fixed (Scheme
2) in each case by reduction (BH3‚THF), followed by deprotonation
(NaOH/H2O) to give the kinetically stable, neutral dendrimers5a-
c. In all cases, the reductions with the borane complex were a little
less than quantitative. In general, however, mass spectrometry and
1H NMR spectroscopy confirmed the presence of5a-c as the major
products, which were also characterized as their fully protonated
derivatives5a-c-H3‚3TFA. The average yield for the conversion
of 4a-c-H3‚3PF6 through5a-c-H3‚3TFA was around 80%. For
5a-c-H3‚3TFA, they can be deprotonated with triethylamine into
their corresponding5a-c to switch off the numerous [N+-H‚‚‚O]
hydrogen bonds and [C-H‚‚‚O] interactions.

Electrospray ionization mass spectrometry (ESI-MS) proved to
be a particularly useful technique for the mass analyses (Table 1)
of 4a-c-H3‚3PF6 and5a-c-H3‚3TFA and, hence, their character-
ization.13 By way of an example, the ESI-MS of the dynamic
dendrimer4c-H3‚3PF6 revealed (Figure 3) a high-intensity signal
at m/z ) 1724.9738 corresponding to the ion mass of [4c-H3]3+,
that is, the loss of 3PF6 ions from the salt.

We have found that, by taking advantage of dynamic covalent
chemistry,1 dendrons from generation zero to two can be self-
assembled in near quantitative yields into, first of all, kinetically
labile and, then, kinetically stable mechanically interlocked den-
drimers. These results demonstrate the potential for a modular

Figure 2. Partial 1H NMR spectra (500 MHz, CD3NO2, 298 K) of the
dynamic dendrimer4c-H3‚3PF6 in addition to the precursors1c, 2, and
3-H3‚3PF6 from which it is self-assembled.

Scheme 2. Fixing of the Kinetically Labile Dendrimers to Give the
Neutral Dendrimers 5a-c and Their Protonation to Yield
5a-c-H3‚3TFA.

Table 1. ESI-MS Data for the Dynamic (4a-c-H3‚3PF6), the
Neutral (5a-c), and Protonated (5a-c-H3‚3TFA) Dendrimers

structure molecular formula
calcd
m/z

found
m/z

[4a-H3]3+ C168H189N12O24
3+ 919.4646 919.4623

[4b-H3]3+ C222H249N12O30
3+ 1187.6109 1187.6109

[4c-H3]3+ C330H369N12O42
3+ 1723.9036 1723.9803

5a C168H198N12O24 2767.4637 2767.4680
5b C222H258N12O30 3571.9031 3572.0780
5c C330H378N12O42 5180.7812 5181.0500
[5a-H3]3+ C168H201N12O24

3+ 923.4959 923.4968
[5b-H3]3+ C222H261N12O30

3+ 1191.6422 1191.6762
[5c-H3]3+ C330H381N12O42

3+ 1727.9349 1727.9941

Figure 3. ESI-MS analysis of the dynamic dendrimer4c-H3‚3PF6.
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approach to the convergent synthesis of dendrimers wherein the
components can be mixed and matched according to the require-
ments of an even larger equilibrating system wherein the dynamic
portion can, in principle, be altered and adapted to suit environ-
ments. A way of making mechanically interlocked dendrimers that
is of practical value has been discovered.
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